Developing Viable Funding Mechanisms for Early Stage, High-risk Energy Technologies

Eric Ingersoll, Lucid Strategy

ARPA-E Alpha Annual Program Review

Eric Ingersoll <eric.ingersoll@gmail.com>

What is a "Megafund" and why is it useful?

A "megafund" is simply a large, diversified portfolio of companies at different stages of product development. In our context, this includes a portfolio of innovative energy projects

- Structure the financing for a megafund as combinations of equity and securitized debt in order to access much larger sources of investment capital
- Megafunds enable the ability to invest in across a portfolio of otherwise too-risky (and, oftentimes, too-costly) endeavors.
 - Reduction in uncertainty/risk exposure by investing in individual companies
 - Investment horizons can be tailored to suit the development horizons of the portfolio projects
 - Financing can be structured to allow for more "patient" capital by specifying longer maturities

Architects of the Megafund Concept

Jose-Maria Fernandez

Prof. Andrew Lo

Roger M. Stein

Hypothetical "Megafund" Example: Cancer Drug Development

Assumptions

- Drug Development Cost = \$200M
- Probability of Success = 5%
- Present Value if successful = \$12.3B

Source

Fagnan et al. "Can Financial Engineering Cure Cancer?" American Economic Review 103, no. 3 (May 2013): 406–411.

Scenario

Number of "Shots on goal"

Return Probability

Investment Attractiveness

Scenario A: \$200M

Invest in 1 drug development program

- Probability of no return: 95%
- Probability of 1 Success (\$12.3B): 5%

Very Low Very few rational investors would invest

Scenario B: \$30B

Invest in 150 drug development programs (150 x \$200M = \$30B)

- Probability of 1 success (\$12.3B): 99.95%
- Probability of 2 successes (\$24.6B): 99.59%
- Probability of 3 successes (\$36.9B): 98.18%

Mathematical Formula

[n!/k!(n-k)!] * p^k * (1-p)^(n-k)
n = # of projects
K = # of successful projects
P = success probability of each projects

Very High

Investment is attractive and could be structured to access the global bond markets

The success probability of individual projects drive how many projects are needed to make the fund successful

- Basic example: How many projects would you need for 99% probability of at least 1 succeeding?
 - If each project has a 10% success probability, you need 44 projects.
 - If each project has a 90% success probability, you only need 2 projects

When each project has 90% success probability:

One project is not enough to "guarantee" a success. But failure probability for each project is 10%. If there are 2 projects, the probability of both failing is $10\% \times 10\% = 1\%$. So there is 99% probability of at least one of the two projects succeeding. You just need 2 projects to "guarantee" a success

Math formula:

$$n = Log(1 - 99\%) / Log(1 - p)$$

p = each project's success probability

n = necessary number of projects for 99% probability of at least 1 success

Project success can be matter of "when," not "if"

A fund prepared for cost overruns and scheduling delays has a higher likelihood of achieving its desired returns

- Developing innovative technologies is often more expensive and time consuming than what is initially planned.
- Assuming no need for additional scientific breakthroughs or solving for major uncertainties in the development path, a project is certain to succeed so long as it has enough money and time.
- Allowing for additional time and/or funding (while highly undesirable) may be prudent given the expected returns

Justification for allocating sufficient reserve capital to sufficiently withstand budget overruns or scheduling delays

